Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.306
Filtrar
1.
J Environ Manage ; 357: 120835, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581897

RESUMO

Euphorbia Rigida (E. Rigida), a lignocellulosic biomass with low ash content, is a suitable feedstock for pyrolysis. This work investigated the physicochemical characteristics and thermokinetic analysis of E. Rigida pyrolysis by using isoconversional and master plots methods. Ultimate and proximate analyses and oxygen bomb calorimeter were used to determine the physicochemical parameters. The activation energies were calculated using model-free methods (KAS, Friedman and Starink) and were found as 184, 178 and 185 kJ/mol, respectively. Using Fraser-Suzuki deconvolution, pseudo-components were also calculated and the active pyrolysis region was divided into three zones. The master plots showed that reaction order mechanisms (Fn) were effective in Zone I, and diffusion mechanisms (Dn) were well matched in Zone II and Zone III. The thermodynamic parameters (ΔH, ΔG and ΔS) were calculated and according to these results, E. Rigida pyrolysis was an endothermic and non-spontaneous process.


Assuntos
Euphorbia , Pirólise , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Termodinâmica , Cinética , Biomassa
2.
Chemosphere ; 353: 141639, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447902

RESUMO

Thermo-chemical behavior of a microalgal biomass; Dunaliella salina was investigated through thermo-gravimetric analyses. Fully-grown D. salina biomass were subjected for biochar conversion using pyrolytic treatment at three distinct heating rates such as 2.5, 5, and 15 °C min-1. The kinetic appraisals were explained by using model-free kinetics viz., Kissinger-Akahira-Sanose, Flynn-Waal-Ozawa and Starink iso-conversional correlations with concomitant evaluation of activation energies (Ea). The Ea value is 194.2 kJ mol-1 at 90% conversion in FWO model, which is higher as compared to other two models. Moisture, volatile substances, and other biochemical components of the biomass were volatilized between 400 and 1000 K in two separate thermo-chemical breakdown regimes. Microscopic and surface characterization analyses were carried out to elucidate the elemental and morphological characteristics of the biomass and biochar. Further, the proficiency of the prepared biochar was tested for removing naphthalene from the watery media. The novelty of the present study lies in extending the applicability of biochar prepared from D. salina for the removal of a model polyaromatic hydrocarbon, naphthalene.


Assuntos
Carvão Vegetal , Naftalenos , Biomassa , Cinética , Termogravimetria
3.
Int J Biol Macromol ; 265(Pt 2): 131093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521306

RESUMO

The hierarchical and heterogeneous structures and the interactions between biomass components within cell walls are closely related to the pyrolysis characteristics. In this work, thermogravimetric analysis (TGA) and pyrolysis kinetics analysis were used to investigate the pyrolysis characteristics of windmill palm (Trachycarpus fortunei (Hook.) H. Wendl.) culm and silk after delignification. The results demonstrate cellulose pyrolysis temperature of silk is much higher than that of culm, attributed to the higher lignin content of the former. After delignification, the cellulose pyrolysis temperature of silk decreased by 48 °C, which is much higher than that of culm by 18 °C, suggesting a strong interaction between lignin and cellulose during the pyrolysis process. Futhermore, pyrolysis kinetics analysis also found that the frequency factor of slik and culm increased by 129 % and 26 %, respectively, attributed to the disappearance of the carbon layer formed by lignin pyrolysis process. And, differ in lignin content is responsible for the discrepancy of frequency factor increase. In conclusion, we propose a mechanism model for lignin hindering cellulose pyrolysis, which is of great significance for understanding the pyrolysis interactions of biomass components in complex supramolecular cell wall.


Assuntos
Celulose , Lignina , Celulose/química , Lignina/química , Pirólise , Termogravimetria , Temperatura , Biomassa , Cinética
4.
J Environ Manage ; 352: 120055, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38184868

RESUMO

The kinetics knowledge of lignocellulosic biomass decomposition is essential to develop efficient thermochemical conversion technology. However, the simplification of reaction mechanisms in existing oxidative pyrolysis studies largely compromises the application of kinetic models. To explore more exact kinetic parameters and reaction mechanism of lignocellulosic biomass oxidative pyrolysis, an updated oxidative pyrolysis kinetic model (seven-step reaction combined kinetics model) coupled with an optimization algorithm is proposed. Based on a series of thermogravimetric experiments in an air atmosphere, the extra oxidative pyrolysis kinetic parameters are obtained by the Shuffled Complex Evolution method. The proposed kinetic model is validated based on the degradation process of each component (hemicellulose, cellulose, and lignin). Furthermore, the obtained kinetic parameters are applied to predict the oxidative pyrolysis behavior, and the predicted mass loss rate is in good agreement with the experimental data. Eventually, according to the key combined kinetics parameters, it is found that the oxidative pyrolysis mechanisms of hemicellulose, cellulose, and lignin correspond to the power law, nucleation & growth, and chemical reaction order, respectively, while the combustion of char corresponds to the reaction order mechanism.


Assuntos
Lignina , Pirólise , Lignina/química , Biomassa , Termogravimetria , Celulose/química , Cinética , Estresse Oxidativo
5.
Environ Sci Pollut Res Int ; 31(9): 13867-13882, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38265584

RESUMO

Pyrolysis technology is crucial for realizing waste bischofite resource utilization. However, previous studies overlooked the complexity of multistep pyrolysis, resulting in a lack of thorough knowledge of the pyrolysis behavior and kinetics. The pyrolysis products were characterized using XRD and FTIR to indicate the bischofite pyrolysis behavior. Additionally, the multistep kinetics was studied using the segmented single-step reaction (SSSR) and Fraser-Suzuki combined kinetic (FSCK) methods. The results show that the bischofite pyrolysis is divided into dehydration and hydrolysis. The former refers to removing crystalline water from MgCl2·nH2O (n = 4,6). At the same time, the latter is related to the removal of HCl, characterized by the strengthening of the Mg-O bond in the FTIR analysis and the emergence of MgOHCl·1.5H2O in the XRD examination. The two main stages are divided into three dehydration reactions (D-1, D-2, D-3) and three hydrolysis reactions (H-1, H-2, H-3) by DTG-DDTG or Fraser-Suzuki deconvolution. Compared with the SSSR method, the FSCK method has improved model repeatability for multistep kinetic parameters. Following Fraser-Suzuki deconvolution, the FSCK method creates almost the same activation energy results when using the Friedman (FR), Kissinger-Akahira-Sunose (KAS), and Vyazovkin (VZK). This work provides fundamental data to promote the maximizing waste bischofite resource utilization.


Assuntos
Desidratação , Pirólise , Humanos , Cinética , Termogravimetria , Biomassa
6.
Bioresour Technol ; 394: 130295, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184085

RESUMO

This study explored bagasse's energy potential grown using treated industrial wastewater through various analyses, experimental, kinetic, thermodynamic, and machine learning boosted regression tree methods. Thermogravimetry was employed to determine thermal degradation characteristics, varying the heating rate from 10 to 30 °C/min. The primary pyrolysis products from bagasse are H2, CH4, H2O, CO2, and hydrocarbons. Kinetic parameters were estimated using three model-free methods, yielding activation energies of approximately 245.98 kJ mol-1, 247.58 kJ mol-1, and 244.69 kJ mol-1. Thermodynamic parameters demonstrated the feasibility and reactivity of pyrolysis with ΔH ≈ 240.72 kJ mol-1, ΔG ≈ 162.87 kJ mol-1, and ΔS ≈ 165.35 J mol-1 K-1. The distribution of activation energy was analyzed using the multiple distributed activation energy model. Lastly, boosted regression trees predicted thermal degradation successfully, with an R2 of 0.9943. Therefore, bagasse's potential as an eco-friendly alternative to fossil fuels promotes waste utilization and carbon footprint reduction.


Assuntos
Celulose , Pirólise , Termodinâmica , Cinética , Termogravimetria
7.
Sci Rep ; 13(1): 19242, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935802

RESUMO

Biomass and its interactions for heat generation have received little attention. In this study, the woody biomass materials were Prosopis africana (PA), Harungana madascariences (HM), Vitrllaria paradoxa (VP), and Afzelia africana (AA). The composition (extractives, carbohydrate, and lignin) of the biomass was determined. The biomass was converted to charcoal in a traditional kiln. A thermo-kinetic examination of the charcoal samples was carried out. The kinetic parameters and potential reaction mechanisms involved in the decomposition process were both obtained using the integral (Flynn-Wall Ozawa) isoconversional methods in conjunction with the Coats-Redfern approach. The activation energy profiles for the charcoal samples in oxidizing atmospheres were 548 kJ/mol for AA, 274 kJ/mol for VP, 548 kJ/mol for PA, and 274 kJ/mol for HM. All charcoal samples underwent comprehensive, multi-step, complex reaction pathways for thermal degradation. The charcoal samples exhibit not only great potential for biochemical extraction but also for bioenergy applications. The significant amount of combustion characteristics in the raw biomass and charcoal samples indicates that each type of wood charcoal produced has more fixed carbon, less ash, and less volatile matter, all of which are desirable for the thermo-chemical conversion of biomass for the production of heat.


Assuntos
Carvão Vegetal , Temperatura Alta , Carvão Vegetal/química , Biomassa , Madeira , Cinética , Termogravimetria
8.
Waste Manag ; 172: 171-181, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918310

RESUMO

The present study endeavors to establish a comprehensive kinetic analysis of Municipal Solid Waste residue pyrolysis. As the sample exhibits four distinct degradation stages, it has been carried out by adopting a multi-step process behavior. Different approaches have been compared, including five isoconversional methods (Kissinger-Akahira-Sunose, Ozawa-Flynn-Wall, Starink, Friedman and Advanced integral Vyazovkin), Mathematical Deconvolution Analysis, and Independent Parallel Reaction Model. The study focuses on the two active pyrolysis steps, the first one corresponds to the biomass components between 150 and 400 °C, with the decomposition peak between 300 and 350 °C, whereas the second corresponds to the plastic fraction with temperature ranging between 400 and 520 °C. The activation energy values obtained from the different kinetic methods for both steps are estimated at 240 and 250 kJ/mol, respectively. It was observed that the biomass components degradation obeys a third-order kinetic model, while the plastic fraction follows a first-order kinetic model. The analytical pyrolysis of the two main stages allows for the identification and semi-quantification of the compounds produced during municipal solid waste pyrolysis. Through analytical pyrolysis, it has been determined that up to 64 % of hydrocarbons are produced, of which 24 % correspond to aromatic compounds. Meanwhile, 20 % of oxygenated compounds were obtained, with ketones, furans, and acids being the most predominant families.


Assuntos
Pirólise , Resíduos Sólidos , Humanos , Cinética , Termogravimetria , Biomassa
9.
J Environ Manage ; 348: 119439, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890400

RESUMO

Metal, carbon and conducting polymer nanoparticles are blended with organic phase change materials (PCMs) to enhance the thermal conductivity, heat storage ability, thermal stability and optical property. However, the existing nanoparticle are expensive and need to be handle with high caution during operation as well during disposal owing to its toxicity. Subsequently handling of solid waste and the disposal of organic PCM after longevity usage are of utmost concern and are less exposed. Henceforth, the current research presents a new dimension of exploration by green synthesized nanoparticles from a thorny shrub of an invasive weed named Prosopis Juliflora (PJ) which is a agro based solid waste. Subsequently, the research is indented to decide the concentration of green synthesized nanoparticle for effective heat transfer rate of organic PCM (Tm = 35-40 °C & Hm = 145 J/g). Furthermore, an in-depth understanding on the kinetic and thermodynamic profile of degradation mechanism involved in disposal of PCM after usage via Coats and Redfern technique is exhibited. Engaging a two-step method, we fuse the green synthesized nanomaterial with PCM to obtain nanocomposite PCM. On experimental evaluation, thermal conductivity of the developed nanocomposite (PCM + PJ) increases by 63.8% (0.282 W/m⋅K to 0.462 W/m⋅K) with 0.8 wt% green synthesized nanomaterial owing to the uniform distribution of nanoparticle within PCM matrix thereby contributing to bridging thermal networks. Subsequently, PCM and PCM + PJ nanocomposites are tested using thermogravimetric analyzer at different heating rates (05 °C/min; 10 °C/min; 15 °C/min & 20 °C/min) to analyze the decomposition kinetic reaction. The kinetic and thermodynamic profile of degradation mechanism involved in disposal of PCM and its nanocomposite of PCM + PJ provides insight on thermal parameters to be considered on large scale operation and to understand the complex nature of the chemical reactions. Adopting thirteen different chemical mechanism model under Coats and Redfern method we determine the reaction mechanism; kinetic parameter like activation energy (Ea) & pre-exponential factor (A) and thermodynamic parameter like change in enthalpy (ΔH), change in Gibbs free energy (ΔG) and change in entropy (ΔS). Dispersion of PJ nanomaterial with PCM reduces Ea from 370.82 kJ/mol-1 to 342.54 kJ/mol-1 (7.7% reduction), as the developed nanomaterial is enriched in carbon element and exhibits a catalytic effect for breakdown reaction. Corresponding, value of ΔG for PCM and PCM + PJ sample within heating rates of 05-20 °C/min varies between 168.95 and 41.611 kJ/mol-1. The current research will unbolt new works with focus on exploring the pyrolysis behaviour of phase change materials and its nanocomposite used for energy storage applications. This work also provides insights on the disposal of PCM which is an organic solid waste. The thermo-kinetic profile will help to investigate and predict the optimum heating rate and temperature range for conversion of micro-scale pyrolysis to commercial scale process.


Assuntos
Nanocompostos , Prosopis , Resíduos Sólidos , Termogravimetria , Termodinâmica , Carbono
10.
J Environ Manage ; 348: 119080, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827086

RESUMO

Environmental concerns associated with the rapid rising plastic consumption have led to the search for better waste utilization and management. Pyrolysis has emerged as an ideal and promising technique for energy extraction from plastic waste. The aim of this work is to explore the waste plastic pyrolysis behavior under non-isothermal heating conditions. The decomposition characteristics, reaction mechanism, kinetics and thermodynamics of a typical widely used thermosetting plastic, acrylonitrile butadiene styrene (ABS), were studied via coupled thermogravimetry, Fourier transform infrared spectrometry and gas chromatography-mass spectrometry analysis (TG-FTIR-GC/MS). Kinetic analysis showed the average Eα values are estimated to be 187.02, 188.55, 187.04 and 185.67 kJ/mol via advanced Vyazovkin, Flynn-Wall-Ozawa (FWO), Tang and Starink model-free method, respectively. Model-fitting CR and master-plots method indicated that f(α)=(1-α)n is the most probable reaction mechanism. The equation of kinetic compensation effect was further developed as lnA = -3.1955 + 0.1736 Eα. Based on these initial inferences, a new reaction scheme coupled with Particle Swarm Optimization (PSO) was put forward for modeling ABS pyrolysis. The optimized values of E, A and n are 198.07 kJ/mol, 7.61 × 1012 s-1 and 1.56, respectively. The predicted results showed that the experimental data can be well characterized by the optimized parameters from PSO, validating the effectiveness and accuracy of the inverse modeling procedure. Moreover, it is found that the volatile products are mainly composed of aromatic compounds, ketones, amines, esters, nitrile compounds, alkenes and amines. Based on the FT-IR and GC-MS results, the possible chemical reactions for ABS pyrolysis from molecular structure were proposed. Finally, thermodynamic analysis was carried out, the calculated values of enthalpy ΔH, Gibb's free energy ΔG and entropy ΔS indicated that non-spontaneous reactions with low favorability exists during ABS decomposition, the process is complex therefore extra energy is needed to promote the reaction. The obtained results should offer as an important reference for future disposal and thermochemical management of such polymer waste.


Assuntos
Acrilonitrila , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Butadienos , Estireno , Termogravimetria , Aminas
11.
J Air Waste Manag Assoc ; 73(11): 853-864, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751230

RESUMO

Thermal treatment is a mainstream technique to separate plastic components from waste crystalline silicon (c-Si) photovoltaic (PV) modules. In this study, the thermogravimetric analysis (TGA) was conducted for a better understanding of the characteristics of plastic components mainly poly(ethylene-co-vinyl) acetate (EVA) binder and polyfluoroethylene composite membrane (TPT) backsheet in waste c-Si PV panels through thermal treatment at four different heating rates (5-20°C·min-1) under nitrogen and air conditions, respectively. The thermal process of the EVA binder whether in a nitrogen or air atmosphere could be divided into two phases, which were 300-400°C and 400-515°C in nitrogen with the total weight loss reached 99.64%; the two phases in the air were 270-405°C and 405-570°C with the total weight loss was 99.68%. The thermal weight loss of TPT in nitrogen has only one phase occured between 380°C and 520°C, and the weight loss rate is about 83%. There are two weight loss phases in the air atmosphere, which the first phase starts from 265°C to 485°C and the second phase ends at 635°C with a final weight loss reaching 97%. Furthermore, the Kissinger-Akahira-Sunose (KAS) method was chosen to calculate the pyrolysis kinetic parameters. The activation energy for EVA in nitrogen (261.16 kJ·mol-1) was higher than in air (209.04 kJ·mol-1), also the TPT in nitrogen (188.28 kJ·mol-1) higher than in air (172.21 kJ·mol-1). That indicated that the thermal decomposition of EVA binder was accelerated at first phase in nitrogen, but there is little difference in air atmosphere. Moreover, the activation energy of PVF of the TPT backsheet in the first phase was lower than that in the second phase. This study provides the fundamental basis to develop efficient thermal separation for the plastic components EVA and TPT in waste PV panels.Implications: This study mainly aims to explore the thermal separation of plastic components of waste c-Si panels for heating treatment, so that developing an accurate heat treatment approach that is efficient to implement for the separation of secondary raw material i.e., glass and silicon wafer from end-of-life PV panels. Therefore, this research findings have significant implications for providing the basic data support for waste PV panels management recycling standards, specifications, or policy documents.


Assuntos
Nitrogênio , Silício , Humanos , Termogravimetria , Cinética , Redução de Peso
12.
Bioresour Technol ; 388: 129784, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37739187

RESUMO

The purpose of this work was to determine the effect of the addition of NH4Cl to oat straw on the evolved gases, kinetic triplet, and thermodynamic parameters of the pyrolysis process at 873 K. A complementary approach allowed to assess the effects of the pyrolysis of chlorine- and nitrogen-enriched biomass. The thermal analysis of biomass was performed for four heating rates (5, 10, 20, and 30 K/min). The doping of NH4Cl in the straw favoured i) carbonisation of the chars, ii) formation of C-N bonds, iii) reduction of evolved CH4 and CO2, and iv) an increase in the mean values of the effective activation energy and all thermodynamic parameters. A group of reactions that best fit the experimental data of the pyrolysis process was selected. It was necessary to use unspecified mechanisms to describe the reaction model, particularly for samples enriched with NH4Cl.


Assuntos
Avena , Gases , Cloreto de Amônio , Pirólise , Termogravimetria , Termodinâmica , Cinética , Biomassa , Cloretos
13.
Environ Sci Pollut Res Int ; 30(42): 95901-95916, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558917

RESUMO

Electrolytic manganese residue (EMR) is a solid filter residue obtained from manganese carbonate ore during the production of metal manganese. A potential avenue towards large-scale utilisation of EMR is its use in cement preparation. However, the preparation of cement materials using EMR requires high-temperature calcination. In this study, the thermal properties and pyrolysis kinetics of belite-calcium sulfoaluminate cement raw meal were systematically studied using a multiple-heating-rate method based on thermogravimetric analysis and a kinetic model. The kinetic and thermodynamic parameters was studied using non-isothermal Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), Friedman and Kissinger methods. The results showed that from 30 to 1300°C, the pyrolysis reaction of cement raw meal was mainly divided into four steps: the crystalline water removal from calcium sulphate dihydrate and bauxite, the ammonia nitrogen removal from ammonium salts and the calcium sulphate crystal transformation; the decomposition of calcium carbonate and carbon-containing organic matter; the sulphate and carbonate substance decomposition and the clinker mineral phase formation. The average activation energies calculated when using the non-isothermal FWO, KAS, Friedman and Kissinger methods were 244.49, 240.7, 239.24 and 380.60 kJ/mol and the average pre-exponential factors were 1.75 × 1020, 3.65 × 1020, 7.11 × 1021 and 1.55 × 1013 s-1, respectively. Herein, the pyrolysis kinetics of the cement raw meal was divided into two main stages: In stage 1 (α: 0.15-0.8, 524°C-754°C), the mechanism of P2/3 accelerated nucleation in the Mampel Power rule, and the reaction mechanism function was G(α)=α3/2. In stage 2 (α: 0.80-0.95, 754°C-1165°C), during the local conversion of α = 0.2-0.8, when α was <0.5, the chemical reaction mechanism of the R3 phase boundary was noted and the mechanism function was G(α) = 1 - (1-α)1/3; however, when α was >0.5, a random nucleation and subsequent growth mechanism of A6 was noted and the mechanism function was G(α) = [-ln(1 - α)]2/3.


Assuntos
Cálcio , Manganês , Bário , Cinética , Termogravimetria , Termodinâmica
14.
Bioresour Technol ; 384: 129333, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37321307

RESUMO

Thermodynamic and kinetic studies are very necessary to evaluate the conversion efficiency of biomass to energy. Therefore, this current work reported the thermodynamic and kinetic parameters of Albizia lebbeck seed pods through thermogravimetric analysis, which was carried out at temperatures from 25 °C to 700 °C, and heating rates of 5, 10, 15, and 20 °C/min. Apparent activation energies were determined by applying three iso-conversional model-free methods including Kissinger-Akahira-Sunose (KAS), Ozawa-Flynn-Wall (OFW), and Starink. Resultantly, average apparent activation energy values for the three models of KAS, OFW, and Starink were found to be 155.29, 156.14, and 155.53 kJ/mol, respectively. In addition, thermodynamic triplets such as enthalpy, Gibbs free energy, and entropy were obtained as 151.16 kJ/mol, 150.64 kJ/mol, and -7.57 J/mol·K, respectively. The above results suggest Albizia lebbeck seed pods could become a potential source for bioenergy production aiming to achieve the sustainable goal and waste-to-energy strategy.


Assuntos
Albizzia , Cinética , Termogravimetria , Termodinâmica , Sementes , Biomassa
15.
Chemosphere ; 337: 139226, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37379972

RESUMO

In the leather industry, tannery sludge is produced in large volume. This study investigated the thermal degradation behavior of tannery sludge using thermogravimetric analysis (TGA). The experiments were carried out in an inert atmosphere using nitrogen gas at varied heating rates of 5, 10, 20, and 40 °C/min in the temperature range of 30-900 °C. For the kinetic parameters calculation, three different models, Friedman, Kissinger-Akahira-Sunose (KAS) and the Ozawa-Flynn-Wall (OFW), were employed. The average activation energy (Ea) obtained from Friedman, KAS, and the OFW methods were 130.9 kJ mol-1, 143.14 kJ mol-1, and 147.19 kJ mol-1 respectively. Along with that, experiment of pyrolysis was accomplished in fixed bed reactor (FBR) at temperature of 400 °C. Biochar produced from FBR had a yield of about 71%. The analysis of gas chromatography-mass spectroscopy shows the different chemical compounds present in the bio-oil containing hydrocarbons (alkanes and alkenes), oxygen containing compounds (alcohols, aldehyde, ketones, esters carboxylic acids and the esters) and the nitrogen containing compounds. The kinetic assessment was complemented by distributed activation energy model (DAEM). In the pyrolysis of tannery sludge six pseudo-components were found to be involved. Furthermore, artificial neural network (ANN) was used to predict the activation energy from conversion, temperature, and the heating rate data. MLP-3-11-1 (Multilayer Perceptrons) described well the conversion behavior of tannery sludge pyrolysis.


Assuntos
Pirólise , Esgotos , Termogravimetria , Cinética , Redes Neurais de Computação , Nitrogênio , Biomassa
16.
Int J Biol Macromol ; 242(Pt 1): 124725, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148941

RESUMO

Recent alarming tones regarding the environment and energy crises have resulted in an emergent need for the utilization of bio-based materials. The current study aims to experimentally investigate the thermal kinetics and pyrolysis behavior of lignin extracted from novel barnyard millet husk (L-BMH) and finger millet husk (L-FMH) crop residue. The characterization techniques FTIR, SEM, XRD, and EDX were employed. TGA was performed to assess the thermal, pyrolysis, and kinetic behavior using Friedman kinetic model. The average lignin yield was obtained as 16.25 % (L-FMH) and 21.31 % (L-BMH). The average activation energy (Ea) was recorded as 179.91-227.67 kJ mol-1 for L-FMH while 158.50-274.46 kJ mol-1 for L-BMH in the conversion range of 0.2-0.8. The higher heating value (HHV) was found to be 19.80 ± 0.09 MJ kg-1 (L-FMH) and 19.65 ± 0.03 MJ kg-1 (L-BMH). The results create a possibility for the valorization of extracted lignin as a potential bio-based flame retardant in polymer composites.


Assuntos
Lignina , Milhetes , Termogravimetria , Biomassa , Cinética
17.
Waste Manag ; 166: 141-151, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172515

RESUMO

The investigation of the pyrolysis behaviour of real-world waste plastics (RWWP) and using them as the feedstock to produce carbon nanotubes (CNTs) could serve as an effective solution to address the global waste plastics catastrophe. This research aimed to characterize the pyrolysis behaviour of RWWP via thermogravimetric analysis (TG) and fast pyrolysis-TG/mass spectrometry (Py-TG/MS) analyses. Activation energies (131.04 kJ mol-1 -171.04 kJ mol-1) for RWWP pyrolysis were calculated by three methods: Flynn-Wall-Ozawa (FWO) method, Kissinger-Akahira-Sunose (KAS) method, and Starink method. Py-TG/MS results indicated that the RWWP could be identified as polystyrene (RWWP-1), polyethylene (RWWP-2), polyethylene terephthalate (RWWP-3, 4), and polypropylene (RWWP-5, 6). In addition, RWWP-1, 2, 5, 6 outperform RWWP-3 and 4 as sources of carbon for producing CNTs. The results showed a high carbon yield of 32.21 wt% and a high degree of CNT purity at 93.04%.


Assuntos
Nanotubos de Carbono , Plásticos , Pirólise , Cinética , Termogravimetria
18.
Sci Total Environ ; 892: 163970, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37164073

RESUMO

To ensure the proper utilization of waste biomass (WB) and high-temperature waste heat, this study proposes a new method for obtaining gaseous fuels by pyrolyzing WB and using waste heat in the converter vaporization cooling flue (CVCF). This study is theoretically based on the simulation software Factsage 6.1 and the release patterns of the gaseous products including CO, H2, CH4 and CO2 obtained from waste biomass, were studied at different temperatures and pressures. Thermogravimetric-mass spectrometer (TG-MS) was used to investigate the pyrolysis of WB at heating rates of 5, 10, 15, and 20 °C/min from room temperature to 1400 °C. Kinetics parameters were calculated by using the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) models. To investigate the effects of temperature, a settling furnace was also used to simulate CVCF. Thermal decomposition produced the primary gases namely CO, CH4, and H2. Pyrolysis had an average activation energy of 183.29 kJ/mol. As the temperature increased from 800 °C to 1200 °C, the CO content increased from 39.7 % to 48.9 % and the H2 content increased from 35 % to 45.1 %. As the temperature rose from 800 to 1200 °C, the lower heating value (LHV) increased from 11.38 to 12.05 MJ/Nm3. The findings primarily confirmed the feasibility of injecting biomass into the CVCF to generate gaseous fuels from waste heat.


Assuntos
Gases , Temperatura Alta , Biomassa , Termogravimetria , Simulação por Computador , Cinética
19.
Bioresour Technol ; 380: 129065, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080440

RESUMO

Sun hemp fibers are natural fibers obtained from plants grown in India and nearby countries. It is lignocellulosic biomass having the complex structure of hemicelluloses, cellulose and lignin. Chemical treatment of natural fibers is in practice to enhance the properties being used as reinforcement. Alkaline-treated fiber was sampled and thermal stability along with kinetic parameters was assessed with thermo gravimetric data at heating rates 10, 20 and 30 °C/min using four model-free methods Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), Friedman (FM), Starink (STAR) along with Distributed activation energy model (DAEM) to calculate pre-exponential factor. The calculated activation energy Ea by these model-free methods were in the range of 93.3-104.8 kJ/mol and pre-exponential factor (A) was observed between the range 46.6 x103-90.5 x106/min by the DAEM method. The standard deviation (σ) calculated from average activation energy using all four methods was 4.5 kJ/mol, which showed the consistency in the methods employed to determine the activation energy of sun hemp.


Assuntos
Cannabis , Biomassa , Celulose , Física , Lignina , Cinética , Termogravimetria
20.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047158

RESUMO

The experimental studies on the thermal properties and decomposition course of a novel class of potential anticancer drugs (1-5) containing in their heterobicyclic structures the asymmetrical triazine template were performed with the use of differential scanning calorimetry (DSC) and simultaneous thermogravimetry/differential scanning calorimetry (TG/DTG/DSC) coupled online with Fourier transform infrared spectroscopy (FTIR) and quadrupole mass spectrometry (QMS) in inert and oxidizing conditions. All the compounds were thermally characterized in detail for the first time in this article. The DSC studies proved that the melting points of the tested compounds depended on the position and type of the substituent at the phenyl moiety, whereas they did not depend on the furnace atmosphere. All the tested polynitrogenated heterocycles proved to be molecules with high thermal stability in both atmospheres, and most of them (1, 3-5) were more stable in oxidizing conditions, which indicated the formation of a more thermally stable form of the compounds when interacting with oxygen. The simultaneous TG/FTIR/QMS analyses confirmed that their pyrolysis process occurred in one main stage resulting in the emission of volatiles such as NH3, HNCO, HCN, CO, CO2, H2O, NO2, aromatic amine derivatives, alkenes (for compounds 1-5), and HCl (for the compound 5). On the other hand, the oxidative decomposition process was more complicated and proceeded in two main stages leading to the emission of NH3, CO2, CO, HCN, HNCO, H2O, some aromatics (for compounds 1-5), HCl (for compounds 3-5) as well as the additional volatiles such as N2, NO2, NH2OH, and (CN)2. The type of the formed volatiles indicated that the decomposition process of the studied heterocycles under the influence of heating was initiated by the radical mechanism. Their decomposition was related to the symmetric cleavage of C-N and C-C bonds (inert conditions) and additional reaction of the volatiles and residues with oxygen (oxidizing conditions).


Assuntos
Dióxido de Carbono , Dióxido de Nitrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Varredura Diferencial de Calorimetria , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...